BAFFLE OIL/WATER SEPARATOR WORKSHEET

2005 Surface Water Design Manual Sizing Method

Project:										
METHODS OF ANALYSIS (Section 6.6.2.1)										
Step 1) Calculate design flows										
Calculate flows on Design Flow and Design Volume worksheet and transfer results here.										
	Tributary area (sf)									
	Water quality design flo $^{1}Q_{wq}$ (cfs)				See 3.2.2 KCRTS/Runoff files Method					
Step 2) Calculate the minimum vertical cross-sectional area										
$A_c = Q/V_H$										
	$A_{c=}$	minimum cross-section	nal area	(sf)						
	Q=	water quality design flo		(cfs)	Step 1					
	$V_{H=}$	design horizontal veloc			Using $V_H=15V_T; V_T=0.033 \text{ fpm}=0.00055 \text{ fps}$					
Step 3) Calculate the width and depth of the vault										
D=	Ac/W	المارية والمارية		(f1)	Mr. L. wood of Md.					
	W= Ac=	width of vault	-	(ft) (sf)	May be standard width from Step 2					
	D=	maximum depth		(ft)	Minimum 3 ft; Maximum 8 ft					
The computed depth D must meet a depth-to-width ratio r of between 0.3 and 0.5										
	Note: $D = (rAc)0.5$									
	W = D/r, where $r = the depth-to-width ratio$									
		D/W=		<u>-</u>						
Step 4	l) Calcu	ılate the length of the	e vault							
L=	FD(V _H /		, , , , ,							
_	. – (- 11	V_H = horizontal veloc	ity (ft/min)	Vh/Vt = 15					
	V _T = oil droplet rise rate (ft/min)									
	F=	turbulence and short-ci		_	select using VH/VT = 15; see Figure 6.6.2.A					
	D=	depth		(ft)	from step 3					
Therefore: L= 1.65 X 15 X D(ft)										
Step 5) Check the separator's length-to-width ratio.										
	L/W vault =				the ratio of L/W must be 5 or greater					
L/W forebay =				•	L/W must be 3 or greater					

 $\begin{tabular}{ll} \underline{Step \ 6)} \ Compute \ and \ check \ that \ the \ proposed \ separator \ vault \\ \underline{satisfies \ the \ minimum \ horizontal \ surface \ area \ } A_H \ \underline{criterion.} \\ \end{tabular}$

A _H must be less	than or $=$ LW:		
$A_H=$	(1.65Q/0.33)	 (sf)	
Q=		(cfs)	Step 1
LW=		(sf)	

Step 7) Compute and check the horizontal surface area of the vault forebay.

This area must be greater than 20 square feet p

```
A_F:A_{TI} > 1:500
L=
           length of vault
                                                                  Step 4
L_{F=}
           length of forebay
                                                       (ft)
                                                                  =L/3
W=
                                                                  Step 3
                                                       (ft<sup>2</sup>)
A_F =
           forebay area = L_F \times W
                                                       (ft^2)
                                                                  (1 \text{ acre} = 43,560 \text{ ft}^2)
A_{TI}=
           Tributary Impervious Area
Required min. area A<sub>F</sub> (20 X A<sub>TI</sub>/10,000)
                                                       (sf)
                                                        (sf)
OR use ratio A_F:A_{TI} =
                                                       :500
                                                                  If > 1:500, OK
```

Step 8) Design the flow splitter and high-flow bypass.

See Section 6.2.5 (p.6-27) for information on flow splitter design.

OTHER CRITERIA (Section 6.6.2)

General siting before other stormwater facilities (p. 6-147)

Baffle requirements (p. 6-148)

Inlet & outlet (p. 6-149)

Material requirements (p. 6-149)

Maintenance access (p. 6-149 to 6-150, also p. 5-37 to 5-38)